Cybernetics And Systems Analysis logo
Editorial Board Announcements Abstracts Authors Archive
KIBERNETYKA TA SYSTEMNYI ANALIZ
International Theoretical Science Journal
-->


DOI 10.34229/KCA2522-9664.25.2.4
UDC 519.147 681.3 511.482
M.M. Glazunov1


1 V.M. Glushkov Institute of Cybernetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine; Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Sofia, Bulgaria

glanm@yahoo.com

OPTIMAL PACKING OF UNIT MINKOWSKI SPHERES ON A PLANE

Abstract. The optimal packing of unit Minkowski spheres on a plane has been studied. The moduli space (parameterization) of admissible lattices of doubled Minkowski spheres, which contain three pairs of points on the corresponding Minkowski sphere, and which determine the packing lattices of unit Minkowski spheres, is constructed. According to the results of the proof of Minkowski’s hypothesis about the critical determinant, a partition of Minkowski spheres into 3 classes was obtained: Watson spheres, Davis spheres, and Mordell–Chebyshev spheres. Lattices that give optimal packings of these spheres are indicated, and densities of these optimal packings are found.

Keywords: Minkowski sphere, admissible lattice, critical lattice, packing lattice, module space, packing density, optimal packing.


full text

REFERENCES

  • 1. Conway J.H., Sloane N.J.A. Sphere packing, lattices and groups. New-York: Springer-Verlag, 1992. 679 p.

  • 2. Viazovska M.S. The sphere packing problem in dimension 8. Ann. of Math. 2017. Vol. 185, Iss. 3. P. 991–1015. https://doi.org/10.4007/annals.2017.185.3.7 .

  • 3. Cohn H., Kumar A., Miller S., Radchenko D., Viazovska M. The sphere packing problem in dimension 24. Ann. of Math. 2017. Vol. 185, Iss. 3. P. 1017–1033. https://doi.org/10.4007/ .

  • 4. Stoyan Y., Pankratov O., Lemishka I., Duryagina Z., Bennell J., Romanova T., Stetsyuk P. Modeling of 3D volume filling with non-spherical and spherical particles of titanium alloy powder for additive manufacturing. Kibernetyka ta systemnyi analiz. 2024. Vol. 60, N 3. P. 97–108.

  • 5. Romanova T.E., Stetsyuk P.I., Fisher A., Yaskov G.M. Proportional packing of circles in a circular container. Kibernetyka ta systemnyi analisz. 2023.Vol. 59, N 1. P. 95–103.

  • 6. Minkowski H. Diophantische Approximationen. Eine Einfuhrung in die Zahlentheorie, Leipzig. B. G. Teubner, 1907. 235 p.

  • 7. Cassels J.W.S. An Introduction to the Geometry of numbers, corrected reprint of the 1971 edition. Classics in Mathematics. Berlin: Springer-Verlag. 1997. 344 p.

  • 8. Lekkerkerker C.G. Geometry of numbers. Bibliotheca Mathematica. Vol. VIII. Groninge, Wolters-Noordhoff Publishing. Amsterdam; London: NorthHolland Publishing Company, 1969. 510 p.

  • 9. Glazunov N., Golovanov A., Malyshev A. Proof of the Minkowski conjecture on the critical determinant of the domain. Studies in number theory. Notes of scientific seminars of LOMI. 1986. 151, Leningrad: Nauka. P. 40–53.

  • 10. Glazunov N. On packing of Minkowski balls, Comptes rendus de l’Academie bulgare Sci. 2023. Vol. 76, N 3. P. 335–342.

  • 11. Mordell L.J. Lattice points in the region . J. London Math. Soc. 1941. Vol. 16. P. 152–156.

  • 12. Davis C. Note on a conjecture by Minkowski. J. London Math. Soc. 1948. Vol. 23. P. 172–175.

  • 13. Cohn H. Minkowski’s conjectures on critical lattices in the metric . Ann. of Math. 1950. Vol 51, N 2. P. 734–738.

  • 14. Watson G. Minkowski’s conjecture on the critical lattices of the region , (I), (II). J. London Math. Soc. 1953. 28. P. 305–309, P. 402–410.




© 2025 Kibernetika.org. All rights reserved.