DOI
10.34229/KCA2522-9664.25.3.9
UDC 519.65
1 Ya.S. Pidstryhach Institute for Applied Problems of Mechanics and Mathematics, National Academy of Sciences of Ukraine, Lviv, Ukraine
Petro.Malachivskyy@gmail.com
|
|
CHEBYSHEV APPROXIMATION BY THE POWER OF A RATIONAL EXPRESSION
Abstract. A method for constructing the Chebyshev approximation of the given function by a rational expression
in a fixed power with the smallest relative error is proposed. It consists in constructing an intermediate Chebyshev approximation with a relative error by a rational expression of the values of the root of this power of the approximated function. The rational expression approximation is calculated as a limiting mean-power approximation by an iterative scheme using the least-squares method with two variable weight functions. Test examples are given to confirm the fast convergence of the method for constructing the Chebyshev approximation by the power of a rational expression.
Keywords: Chebyshev approximation by the power expression, Chebyshev approximation by the rational expression, mean-power approximation, least squares method, variable weight function.
full text
REFERENCES
- 1. Wolfram MathWorld. Beta Function. 2024. https://mathworld.wolfram.com/.
- 2. Luke Y.L. Mathematical functions and their approximations. 1st ed. Academic Press, 1975. 568 p.
- 3. DeVore R.A. Nonlinear approximation and its applications. In: Multscale, nonlinear and adaptive approximation. DeVore R.A. , Kunoth A. (Eds.). Berlin; Heidelberg: Springer, 2009. P. 169–201. https://doi.org/10.1007/.
- 4. Zamani M. A simple 2D interpolation model for analysis of nonlinear data. Natural Science. 2010. Vol. 2, N 6. P. 641-645. https://doi.org/10.4236/.
- 5. Iske A. Approximation theory and algorithms for data analysis. Cham: Springer, 2018. X, 358 p. https://doi.org/10.1007/.
- 6. Skopetskii V.V., Malachivskii P.S. Chebyshev approximation of functions by the sum of a polynomial and an expression with a nonlinear parameter and endpoint interpolation. Cybernetics and Systems Analysis. 2009. Vol. 45, N 1. P. 58–68. https://doi.org/ 10.1007/.
- 7. Jamshidzadeh M., Ein-Mozaffari F., Lohi A. Experimental analysis of the mass transfer coefficient and interfacial area in an aerated coaxial mixing system comprising a non-Newtonian solution. Industrial & Engineering Chemistry Research. 2020. Vol. 59, Iss. 49. P. 21530–21547. https://doi.org/10.1021/acs.iecr.0c03641.
- 8. Mitin V.F., Kholevchuk V.V., Kolodych B.P.. Ge-on-GaAs film resistance thermometers: low-temperature conduction and magnetoresistance. Cryogenics. 2011. Vol. 51, Iss. 1. P. 68–73. https://doi.org/10.1016/.
- 9. Malachivskyy P.S., Pizyur Ya.V., Danchak N.V., Orazov E.B. Chebyshev approximation by exponential expression with relative error. Cybernetics and Systems Analysis. 2015. Vol. 51, N 2. P. 286–290. https://doi.org/10.1007/.
- 10. Rudtsch S., von Rohden C. Calibration and self-validation of thermistors for high-precision temperature measurements. Measurement. 2015. Vol. 76. P. 1–6. https://doi.org/10.1016/.
- 11. Malachivskyy P.S., Melnychok L.S., Pizyur Y.V. Chebyshev approximation of multivariable functions by a power expression. Cybernetics and Systems Analysis. 2024. Vol. 60, No. 4. Р. 571–578. https://doi.org/10.1007/.
- 12. Hughes-Riley T., Lugoda P., Dias T., Trabi C.L., Morris R.H. A study of thermistor performance within a textile structure. Sensors. 2017. Vol. 17, Iss. 8. Article number 1804. https://doi.org/10.3390/.
- 13. Gajda J., Sroka R., Zeglen T., Burnos P. The influence of temperature on errors of wim systems employing piezoelectric sensors. Metrology and Measurement Systems. 2013. Vol. XX, N 2. P. 171–182. https://doi.org/10.2478/.
- 14. Javaid A., Mohammed A., Ghaithan A. A regression-based model for prediction of flowmeters calibration cost in oil and gas industry. Flow Measurement and Instrumentation. 2022. Vol. 86. Article number 102191. https://doi.org/10.1016/.
- 15. Bomba A.Ya., Baranovsky S.V., Pasichnyk M.S., Pryshchepa O.V. Modeling small-scale spatially distributed influences on the development of infectious diseases. Mathematical Modeling and Computing. 2020. Vol. 7, N 2. Р. 310–321. https://doi.org/10.23939/.
- 16. Baranovsky S.V., Bomba A.Ya. Generalizing the infectious disease model taking into account diffusion perturbations, logistic dynamics, and biostimulation. Cybernetics and Systems Analysis. 2023. Vol. 59, N 1. P. 134–145. https://doi.org/10.1007/.
- 17. Collatz L., Krabs W. Approximationstheorie. Tschebyscheffsche Approximation mit Anwendungen. Stuttgart: Vieweg+Teubner Verlag, 1973. 212 p.
- 18. Popov B. A. Uniform approximation by splines [in Russian]. Kyiv: Naukova Dumka, 1989. 272 p.
- 19. Malachivskyi R.P., Bun R.A., Medynskyi I.P. Chebyshev approximation by the exponent from a rational expression. Mathematical Modeling and Computing. 2025. Vol. 12, N. 1. P. 233–240. https://doi.org/10.23939/.
- 20. Malachivskyy P.S., Melnychok L.S., Pizyur Y.V. Chebyshev approximation of multivariable functions by a logarithmic expression. Cybernetics and Systems Analysis. 2023. Vol. 59, N. 2. Р. 317–324. https://doi.org/10.1007/.
- 21. Malachivskyy P.S., Melnychok L.S., Pizyur Ya.V. Chebyshev approximation of multivariable functions by the exponential expression. Cybernetics and Systems Analysis. 2021. Vol. 57, N 3. Р. 429–435. https://doi.org/10.1007/s10559-021-00367-5.
- 22. Remez E.Ya. Fundamentals of numerical methods of Chebyshev approximation [in Russian]. Kyiv: Nauk. Dumka, 1969. 623 p.
- 23. Malachivskyy P.S., Pizyur Y.V., Malachivskyi R.P. Chebyshev approximation by a rational expression for functions of many variables. Cybernetics and Systems Analysis. 2020. Vol. 56, N 5. Р. 811–819. https://doi.org/10.1007/.
- 24. Malachivskyy P.S., Melnychok L.S., Pizyur Ya.V. Chebyshev approximation of multivariable functions by a constrained rational expression. Cybernetics and Systems Analysis. 2023. Vol. 59, N. 1. Р. 146–155. https://doi.org/10.1007/.
- 25. Maple. The Essential Tool for Mathematics. https://www.maplesoft.com/products/ Maple/.
- 26. Sergienko I.V., Zadiraka V.K., Lytvyn O.M. Elements of the general theory of optimal algorithms. SOIA. Springer Cham, 2021. Vol. 188. 377 p. https://doi.org/10.1007/.