Cybernetics And Systems Analysis logo
Editorial Board Announcements Abstracts Authors Archive
KIBERNETYKA TA SYSTEMNYI ANALIZ
International Theoretical Science Journal
-->


DOI 10.34229/KCA2522-9664.25.4.6
UDC 519.6
O.P. Nechuiviter1


1 Educational and Research Institute "Ukrainian Engineering and Pedagogical Academy" of V.N. Karazin Kharkiv National University, Kharkiv, Ukraine

olesia.nechuiviter@gmail.com

Approximate calculation of double integrals of highly oscillating functions
of general type using the cubature formula of optimal order of accuracy
on a class of differentiable functions

Abstract. The problem of approximating double integrals of highly oscillating functions of general type (irregular case) is considered. A cubature formula is constructed that uses O.M. Lytvyn's information operators and piecewise linear splines as auxiliary functions. Information about the functions is provided by the corresponding values on the lines. It is proved that the proposed cubature formula is optimal in order of accuracy on the class of differentiable functions.

Keywords: optimal numerical integration, highly oscillating functions of general type, O.M. Lytvyn’s information operators, cubature formula optimal in order of accuracy, differential functions of two variables.


full text

REFERENCES

  • 1. Iserles A. On the numerical quadrature of highly-oscillating integrals I: Fourier transforms. Tech. Reports Numerical Analysis (NA2003/05). DAMPT, University of Cambridge, 2003. 26 p.

  • 2. Iserles A. On the numerical quadrature of highly-oscillating integrals II: Irregular oscillators. Tech. Reports Numerical Analysis (NA2003/09.) DAMPT, University of Cambridge, 2003. 22 p.

  • 3. Milovanovic G.V., Stanic M.P. Numerical integration of highly oscillating functions. Analytic Number Theory, Approximation Theory and Special Functions. 2014. P. 613–649.

  • 4. Zadiraka V.K., Luts L.V., Shvidchenko I.V. Theory of calculations of integrals of rapidly oscillating functions. Kyiv: Nauk. Dumka. 2023. 472 p. https://doi.org/10.15407978-966-00-1843-3.

  • 5. Luts, L.V. Optimal calculation of integrals of rapidly oscillating functions for some classes of differential functions. Cybernetics and Systems Analysis. 2024. Vol. 60, N 2. P. 276–284. https://doi.org/10.1007/s10559-024-00668-5 .

  • 6. Iserles A., Norsett S.P. From high oscillation to rapid approximation III: Multivariate expansions. Tech. Reports Numerical Analysis (NA2007/01). DAMPT, University of Cambridge, 2007. 37 p.

  • 7. Iserles A., Norsett S.P. From high oscillation to rapid approximation IV: Accelerating convergence. Tech. Reports Numerical Analysis (NA2007/07). DAMPT, University of Cambridge, 2007. 24 p.

  • 8. Gao J., Condon M., Iserles A. Spectral computation of highly oscillatory integral equations in laser theory. Tech. Reports Numerical Analysis (NA2018/04). DAMPT, University of Cambridge, 2018. 30 р.

  • 9. Gao J., Chang G. A bivariate Filon-Clenshaw-Curtis method of the highly oscillatory integrals on a square. Journal of Computational and Applied Mathematics. 2023. https://doi.org/10.1016/j.cam.2023.115599 .

  • 10. Sergienko I.V., Zadiraka V.K., Lytvyn O.M. Elements of the General Theory of Optimal Algorithms. Springer, 2021. 378 p. https://doi.org/10.1007/978-3-030-90908-6 .

  • 11. Sergienko I.V., Lytvyn O.M. New information operators in mathematical modeling. Kyiv: Nauk. Dumka, 2018. 550 p.

  • 12. Lytvyn O.N., Nechuyviter O.P. -Fourier coefficients on the class of differentiable functions and spline interflatation. Journal of Automation and Information Sciences. 2012. Vol. 44, Iss. 3. P. 45–56. https://doi.org/10.1615/JAutomatInfScien.v44.i3.40 .

  • 13. Lytvyn O.M., Nechuiviter O.P. Approximate calculation of triple integrals of rapidly oscillating functions with the use of lagrange polynomial interflation. Cybernetics and Systems Analysis. 2014. Vol. 50, N 3. P. 410–418. https://doi.org/10.1007/s10559-014-9629-1 .

  • 14. Mezhuyev V., Lytvyn O.M., Nechuiviter O., Pershyna Y., Keita K., Lytvyn O.O. Cubature formula for approximate calculation of integrals of two-dimensional irregular highly oscillating functions. U.P.B. Sci. Bull., Series A. 2018. Vol. 80, Iss. 3. P. 169–182.

  • 15. Nechuiviter O.P. Сubature formula for approximate calculation integral of highly oscillating function of tree variables (irregular case). Radio Electronics, Computer Science, Control. 2020. N 4. P. 65–73. https://doi.org/10.15588/1607-3274-2020-4-7 .

  • 16. Nechuiviter O.Р. Application of the theory of new information operators in conducting research in the field of information technologies. Information Technologies and Learning Tools. 2021. Vol. 82, N 2. Р. 282–296. https://doi.org/10.33407/itlt.v82i2.4084 .

  • 17. Nechuiviter O.P., Iarmosh O.V., Kovalchuk K.H. Numerical calculation of multidimensional integrals depended on input information about the function in mathematical modelling of technical and economic processes. IOP Conference Series: Materials Science and Engineering. 2021. Vol. 1031, N 1. 012059. https://doi.org/10.1088/ .

  • 18. Sergienko I.V., Zadiraka V.K., Lytvyn O.M., Nechuiviter O.P. Optimal algorithms for calculating integrals of rapidly oscillating functions using new information operators. Kyiv: Nauk. Dumka, 2017. 336 p.

  • 19. Nechuiviter O.P., Keita K.V. Optimal integration of two-dimensional rapidly oscillating functions of general form. Matematychne ta komp’yuterne modelyuvanny. 2017. Iss. 15. P. 139–144.

  • 20. Ivanov S.S., Nechuiviter O.P., Kovalchuk K.G. Approximate calculation of double integrals of rapidly oscillating functions of general form. Fizyko-matematychne modelyuvannya ta informatsiyni tekhnolohiyi. 2023. Iss. 37. P. 37–41. https://doi.org/10.15407/fmmit2023.37.037 .




© 2025 Kibernetika.org. All rights reserved.