DOI
10.34229/KCA2522-9664.25.5.10
UDC 519.8
S.O. Mashchenko
Taras Shevchenko National University of Kyiv, Kyiv, Ukraine,
s.o.mashchenko@gmail.com
LINEAR PROGRAMMING WITH A FUZZY SET OF FUZZY INEQUALITIES
Abstract. This paper investigates a linear programming problem with a fuzzy set (FS) of constraints in the form of fuzzy inequalities.
It is shown that a solution to this problem forms a type-2 FS (T2FS). The corresponding type-2 membership function of this T2FS is given. We prove that a solution T2FS can be decomposed into a finite collection of FS based on secondary membership grades. Each of these is a solution to the corresponding fuzzy linear programming problem with a crisp set of constraints. This set is the corresponding cut of the initial FS of constraints. The illustrative example is also included for clarity.
Keywords: decision making, fuzzy linear programming problem, fuzzy optimization, type-2 fuzzy set.
full text
REFERENCES
- 1. Carlsson C., Fuller R. Fuzzy reasoning in decision making and optimization. Heidelberg: Physica, 2002. XIII, 338 p. https://doi.org/10.1007/978-3-7908-1805-5.
- 2. Lodwik W.A., Kacpryk J. (Eds.). Fuzzy optimization, recent advances and applications. Berlin; Heidelberg: Springer-Verlag. 2010. XXII, 530 p. https://doi.org/10.1007/978-3-642-13935-2.
- 3. Bector C.R., Chandra S. Fuzzy mathematical programming and fuzzy matrix games. Berlin; Heidelberg: Springer, 2005. XII, 236 p. https://doi.org/10.1007/3-540-32371-6.
- 4. Semenova N.V., Kolechkina L.N., Nagirna A.M. Vector optimization problems with linear criteria over a fuzzy combinatorial set of alternatives. Cybernetics and Systems Analysis. 2011. Vol. 47, N 2. P. 250–259. https://doi.org/10.1007/s10559-011-9307-5.
- 5. Nakonechnyi A.G., Kapustian E.A., Chikrii A.A. Control of impulse systems in conflict situation. Journal of Automation and Information Sciences. 2019. Vol. 51, Iss. 9. P. 1–11. https://doi.org/10.1615/JAutomatInfScien.v51.i9.10.
- 6. Chinneck J.W. Feasibility and infeasibility in optimization: Algorithms and computational methods. New York: Springer Verlag US, 2008. XXII, 274 p. https://doi.org/10.1007/978-0-387-74932-7.
- 7. Mashchenko S.O. Sum of discrete fuzzy numbers with fuzzy set of summands. Cybernetics and Systems Analysis. 2021. Vol. 57, N 3. P. 374–382. https://doi.org/10.1007/s10559-021-00362-w.
- 8. Mashchenko S.O. Minimum of fuzzy numbers with a fuzzy set of operands. Cybernetics and Systems Analysis. 2022. Vol. 58, N 2. P. 210–219. https://doi.org/10.1007/s10559-022--00452-3.
- 9. Mashchenko S.O., Kapustian D.O. Decomposition of intersections with fuzzy sets of operands. In: Contemporary approaches and methods in fundamental mathematics and mechanics. Understanding complex systems. Sadovnichiy V.A., Zgurovsky M.Z. (Eds.). Cham: Springer, 2021. P. 417–432. https://doi.org/10.1007/978-3-030-50302-4_20.
- 10. Mashchenko S.O. Generalization of Germeyer’s criterion in the problem of decision making under the uncertainty conditions with the fuzzy set of the states of nature. Journal of Automation and Information Sciences. 2012. Vol. 44, Iss. 10. P. 26–34. https://doi.org/10.1615/JautomatInfScien.v44.i10.20.
- 11. Zadeh L.A. Quantitative fuzzy semantics. Inform. Sci. 1971. Vol. 3, Iss. 2. P. 159–176. https://doi.org/10.1016/S0020-0255(71)80004-X.
- 12. Verdegay J.L. A dual approach to solve the fuzzy linear programming problem. Fuzzy Sets and Systems. 1984. Vol. 14, Iss. 2. P. 131–141. https://doi.org/10.1016/0165-0114(84)90096-4.
- 13. Verdegay J.L. Fuzzy mathematical programming. In: Fuzzy Information and Decision Processes. Gupta M.M., Sanchez E. (Eds.). North Holland Publishing Co.: Amsterdam, 1982. P. 231-238. URL: https://madangupta.com/pages/info/mmg/paper/BE/BE-004.pdf.
- 14. Zadeh L.A. The concept of a linguistic variable and its application to approximate reasoning - I. Inform. Sci. 1975. Vol. 8, Iss. 3. P. 199–249. https://doi.org/10.1016/0020-0255(75)90036-5.
- 15. Mendel J.M., John R.I.B. Type-2 fuzzy sets made simple. IEEE Transactions on Fuzzy Systems. 2002. Vol. 10, Iss. 2. P. 117–127. https://doi.org/10.1109/91.995115.
- 16. Harding J., Walker C., Walker E. The variety generated by the truth value algebra of type-2 fuzzy sets. Fuzzy Sets and Systems. 2010. Vol. 161, Iss. 5. P. 735–749. https://doi.org/10.1016/j.fss.2009.07.004.
- 17. De A.K., Chakraborty D., Biswas A. Literature review on type-2 fuzzy set theory. Soft Computing. 2022. Vol. 26, Iss. 18. P. 9049-9068. https://doi.org/10.1007/s00500-022-07304-4.