DOI
10.34229/KCA2522-9664.26.1.11
UDC 519.2
Ya.I. Yeleyko
Ivan Franko National University of Lviv, Lviv, Ukraine,
yaroslav.yeleyko@lnu.edu.ua
A.Y. Drebot
Ivan Franko National University of Lviv, Lviv, Ukraine,
Andrii.Drebot.AMTS@lnu.edu.ua
MIXTURE OF ERGODIC MARKOV CHAINS
Abstract. This paper considers time series that represent a sequence of certain states, which can
be modeled as a Markov chain. It is assumed that the chain describing the time series can be represented as a mixture of arbitrary ergodic independent
Markov chains. A methodology for finding the coefficients of this mixture will be proposed, which is based on the application of the Ergodic Theorem.
Keywords: Markov chains, ergodic theorem, mixture of Markov chains, limiting distribution.
full text
REFERENCES
- 1. Miles C.E., Webber R.J. Dynamical mixture modeling with fast, automatic determination of Markov chains. arXiv:2406.04653v1 7 Jun 2024. https://doi.org/10.48550/arXiv.2406.04653.
- 2. Bao J., Zhu M., Li Y., Wang S. Representation and de-interleaving of mixtures of hidden Markov processes. arXiv:2406.00416v1 1 Jun 2024. https://doi.org/10.48550/arXiv.2406.00416.
- 3. Fitzpatrick M., Stewart M. Asymptotics for Markov chain mixture detection. Econometrics & Statistics. 2021. Vol. 22. P. 56–66. https://doi.org/10.1016/j.ecosta.2021.11.004.
- 4. Du Roy de Chaumaray M., Marbac M., Navarro F. Mixture of hidden Markov models for accelerometer data. The Annals of Applied Statistics. 2020. Vol. 14, N 4. P. 1834–1855. https://doi.org/10.1214/20-AOAS1375.
- 5. Vidotto D., Vermunt J.K., Van Deun K. Multiple imputation of longitudinal categorical data through Bayesian mixture latent Markov models. Journal of Applied Statistics. 2020. Vol. 47, Iss. 10. P. 1720–1738. https://doi.org/10.1080/02664763.2019.1692794.
- 6. Norris J.R. Markov chains. Cambridge University Press, 1997. 236 p. URL: https://www.cambridge.org/core /books/markov-chains/A3F966B10633A32C8F06F37158031739.
- 7. Walters P. An introduction to ergodic theory. New York: Springer New York, 2000. 247 p. URL: https://link.springer.com/book/9780387951522.
- 8. Anderson T.W., Goodman L.A. Statistical inference about Markov chains. The Annals of Mathematical Statistics. 1957. Vol. 28, Iss. 1. P. 89–110. https://doi.org/10.1214/aoms/1177707039.
- 9. Cappe O., Moulines E., Rydn T. Inference in hidden Markov models. New York; Berlin; Heidelberg: Springer, 2005. 653 p. URL: https://people.bordeaux.inria.fr/pierre.delmoral/hmm-cappe-moulines-ryden.pdf.