Cybernetics And Systems Analysis logo
Editorial Board Announcements Abstracts Authors Archive
Cybernetics And Systems Analysis
International Theoretical Science Journal
UDC 681.32+537.8
M.A. Primin1, I.V. Nedayvoda2


1 V.M. Glushkov Institute of Cybernetics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine

priminma@meta.ua

2 V.M. Glushkov Institute of Cybernetics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine

igorvlad63@meta.ua

METHOD AND ALGORITHM FOR OBTAINING ELEMENTS OF THE TENSOR
OF SPATIAL DERIVATIVES OF THE MAGNETIC INDUCTION VECTOR
IN THE PROBLEM OF MAGNETIC ANOMALIES SEARCH

Abstract. The values of all the components of the magnetic induction vector and its first spatial derivatives at the points of observation plane are obtained by the spatial distribution of the magnetic field parameters at each observation point. The inverse problem is solved with the use of the analytic eigenvector method. The algorithm is simulated using real data of magnetometric studies in geomagnetic field.

Keywords: magnetic anomalies, magnetostatic inverse problem, spatial derivatives tensor, Fourier transformation, SQUID gradiometer.



FULL TEXT

REFERENCES

  1. Nabighian M.N., Grauch V.J.S., Hansen R.O., LaFehr T.R., Li Y., Peirce J.W., Phillips J.D., Ruder M.E. The historical development of the magnetic method in exploration. Geophysics. 2005. Vol. 70, N 6. P. 33ND–61ND.

  2. Bloch Yu.I., Interpretation of gravitational and magnetic anomalies. Moscow: MGGA, 2009. 232 p.

  3. Baranov W. Potential fields and their transformations in applied geophysics [Russian tanslation]. Moscow: Nedra, 1980. 151 p.

  4. Primin M.A., Goumenyuk-Sychevsky V.I., Nedayvoda I.V. Methods and Algorithms for Localization of Magnetic Field Source [in Russian]. Kyiv: Nauk. Dumka, 1992. 92 p.

  5. Primin M., Nedayvoda I. Inverse problem solution algorithms in magnetocardiography: New analytical approach and some results. International Journal of Applied Electromagnetics and Mechanics. 2009. Vol. 29, N 2. P. 65–81.

  6. Primin M.A., Nedayvoda I.V. A method and an algorithm to reconstruct the spatial structure of current density vectors in magnetocardiography. Cybernetics and Systems Analysis. 2017. Vol. 53, N 3. P. 485–494. DOI: https://doi.org/10.1007/s10559-017-9950-6.

  7. Pedersen L.B., Rasmussen T.M. The gradient tensor of potential field anomalies: Some implications on data collection and data processing of maps. Geophysics. 1990. Vol. 55, N 12. P. 1558–1566.

  8. Chwala A., Stolz R., Zakosarenko V., Fritzsch L., Schulz M., Rompel A., Polome L., Meyer M., Meyer H.G. Full tensor SQUID gradiometer for airborne exploration. In: 22nd International Geophysical Conference and Exhibition (26–29 February 2012, Brisbane, Australia), 2012. P. 1–4.

  9. Schmidt P., Clark D., Leslie K., Bick M., Tilbrook D., Foley C. GETMAG — a SQUID magnetic tensor gradiometer for mineral and oil exploration. Exploration Geophysics. 2004. Vol. 35, N 4. P. 297–305.

  10. Gamey T.J. Development and evaluation of an airborne superconducting quantum interference device-based magnetic gradiometer tensor system for detection, characterization and mapping of unexploded ordnance: SERDP Project MM-1316, 2008.

  11. Wynn W.M., Frahm C.P., Carroll P.J., Clark R.H., Wellhoner J., Wynn M.J., Advanced superconducting gradiometer/magnetometer arrays and a novel signal processing technique. IEEE Trans. Mag. 1975. Vol. 11, Iss. 2. P. 701–707.

  12. Maslennikov Yu.V., Primin M.A., Slobodtchikov V.Yu., Nedayvoda I.V., Krymov V.A., Khanin V.V., Ivanov G.G., Bulanova N.A., Kuznetsova S.Yu., Gunaeva V.N. SQUID-based magnetometric systems for cardiac diagnostics. Biomedical Engineering. 2017. Vol. 51, N 3. Р. 153–156.

© 2019 Kibernetika.org. All rights reserved.