UDC 519.6:517
1 V.M. Glushkov Institute of Cybernetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
zvk140@ukr.net
|
2 V.M. Glushkov Institute of Cybernetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
lv1@ukr.net
|
OPTIMAL FOR ACCURACY QUADRATURE FORMULAS FOR CALCULATING
OF THE BESSEL TRANSFORMATION FOR CERTAIN CLASSES OF SUB-INTEGRAL
FUNCTIONS
Abstract. The paper considers the problem of constructing optimal for accuracy in classes
of functions and close to them quadrature formulas for calculating the Bessel transformation.
For some classes of subintegral functions, optimal estimates of the error in calculating the
Bessel transform are constructed, and quadrature formulas are constructed on which these estimates are achieved.
Keywords: Bessel transformation, optimal in accuracy quadrature formula, interpolation classes of functions, hat method, boundary functions method.
FULL TEXT
REFERENCES
- Bakhvalov N.S. Numerical methods [in Russian]. Moscow: Nauka, 1973. 632 p.
- Zadiraka V.K. The theory of computing the Fourier transform [in Russian]. Kiev: Nauk. dumka, 1983. 215 p.
- Zadiraka V.K., Melnikova S.S. Digital signal processing [in Russian]. Kiev: Nauk. dumka, 1993. 294 p.
- Bessel functions: Study guide. Comp. V.I. Zubov. Moscow: MFTI, 2007. 51 p.
- Stein E. Harmonic analysis: Real-variable methods, orthogonality, and oscillatory integrals. Princeton, NJ: Princeton University Press, 1993. 695 p.
- Natanson N.P. Constructive theory of functions [in Russian]. Moscow: Gostekhizdat, 1949. 588 p.
- Alberg J., Nilsson E., Walsh J. Theory of splines and its applications [Russian translation]. Moscow: Mir, 1972. 316 p.
- Zavyalov Yu.S., Kvasov B.I., Miroshnichenko V.L. Spline function methods [in Russian]. Moscow: Nauka, 1980. 352 p.
- Yinkun Wang, Ying Li, Jianshu Luo. Numerical analysis for the moments of highly oscillatory Bessel functions and Bessel-trigonometric functions. arXiv:1602.07062v1 [math.NA] 23 Feb 2016.