Cybernetics And Systems Analysis logo
Editorial Board Announcements Abstracts Authors Archive
Cybernetics And Systems Analysis
International Theoretical Science Journal
-->

UDC 512.61:519.61
N.A. Vareniuk1, E.F. Galba2, I.V. Sergienko3, N.I. Tukalevska4


1 V.M. Glushkov Institute of Cybernetics, National Academy
of Sciences of Ukraine, Kyiv, Ukraine

nvareniuk@ukr.net

2 V.M. Glushkov Institute of Cybernetics, National Academy
of Sciences of Ukraine, Kyiv, Ukraine

3 V.M. Glushkov Institute of Cybernetics, National Academy
of Sciences of Ukraine, Kyiv, Ukraine

incyb@incyb.kiev.ua

4 V.M. Glushkov Institute of Cybernetics, National Academy
of Sciences of Ukraine, Kyiv, Ukraine

Tukalevska@nas.gov.ua

ITERATIVE METHODS FOR CALCULATION OF WEIGHTED PSEUDOINVERSE MATRICES
WITH MIXED WEIGHTS

Abstract. The decompositions of weighted pseudoinverse matrices with mixed weights (one of weighted matrix is positive definite and other is nonsingular indefinite) into matrix power series with positive exponents are obtained and investigated. Iterative methods for calculation of weighted pseudoinverce matrices with mixed weights are generated and investigated on the basis of the obtained expansions of weighted pseudoinverse matrices. Different variants of weighted pseudoinverce matrices with mixed nonsingular weights are analyzed and developed into matrix power series.

Keywords: weighted pseudoinverse matrices with indefinite and mixed weights, matrix power series, iterative methods.



FULL TEXT

REFERENCES

  1. Chipman J.S. On least squares with insufficient observation. J. Amer.Statist. Assoc. 1964. Vol. 59, N 308. P. 1078–1111.

  2. Milne R.D. An oblique matrix pseudoinverse. SIAM J. Appl. Math. 1968. Vol. 16, N 5. P. 931–944.

  3. Ward J.F., Boullion T.L., Lewis T.O. A note on the oblique matrix pseudoinverse. SIAM J. Appl. Math. 1971. Vol. 20, N 2. P. 173–175.

  4. Ward J.F., Boullion T.L., Lewis T.O. Weighted pseudoinverses with singular weights. SIAM J. Appl. Math. 1971. Vol. 21, N 3. P. 480–482.

  5. Galba E.F., Deineka V.S., Sergienko I.V. Weighted pseudoinverse matrices and weighted normal pseudosolutions with degenerate weights. Zh. Vychisl. Mat. and Mat. phys. 2009. Vol. 49, N 8. P. 1347–1363.

  6. Sergienko I.V., Galba E.F., Deineka V.S. Existence and uniqueness of weighted pseudoinverse matrices and weighted normal pseudosolutions with degenerate weights. Ukr. Mat. Journal. 2011. Vol. 63, N 1. P. 80–101.

  7. Sergienko I.V., Galba E.F., Deineka V.S. Existence and uniqueness theorems in the theory of weighted pseudoinversion with degenerate weights. Kibernetika i sistemnyj analiz. 2011. Vol. 47, N 1. P. 14–33.

  8. Sergienko I.V., Galba E.F. Weighted pseudo-inversion with degenerate weights. Kibernetika i sistemnyj analiz. 2016. Vol. 52, N 5. P. 56–80.

  9. Galba E.F., Sergienko I.V. Methods for computing weighted pseudoinverse matrices and weighted normal pseudosolutions with degenerate weights. Kibernetika i sistemnyj analiz. 2018. Vol. 54, N 3. P. 65–93.

  10. Mitra S.K., Rao C.R. Projections under seminorms and generalized Moore–Penroze inverses. Linear Algebra and Appl. 1974. N 9. P. 155–167.

  11. Rao C.R., Mitra S.K. Generalized inverse of matrices and its applications. New York: Wiley, 1971. 240 p.

  12. Varenyuk N.A., Galba E.F., Sergienko I.V., Khimich A.N. Weighted pseudo-inversion with indefinite weights. Ukr. Mat. Journal. 2018. Vol. 70, N 6. P. 752–772.

  13. Galba E.F., Varenyuk N.A. Representation of weighted pseudoinverse matrices with mixed weights in terms of other pseudoinverse matrices. Kibernetika i sistemnyj analiz. 2018. Vol. 54, N 2. P. 17–25.

  14. Galba E.F., Varenyuk N.A. Decomposition of weighted pseudoinverse matrices with mixed weights into matrix power series and products. Kibernetika i sistemnyj analiz. 2019. Vol. 55, N 5. P. 67–80.

  15. Varenyuk N.A., Galba E.F., Sergienko I.V., Tukalevskaya N.I. Iterative methods for calculating weighted pseudoinverted matrices with mixed weights based on their development into matrix power series. Dopov. Nat. acad. nauk Ukr. 2020. N 8. P. 19–25.

  16. Pontryagin L.S. Hermitian operators in a space with indefinite metric. Izvestiya AN SSSR. Ser. Math. 1944. Vol. 8. P. 243–280.

  17. Maltsev A.I. Fundamentals of Linear Algebra [in Russian]. Moscow; Leningrad: Gostekhizdat, 1948.

  18. Bognar J. Indefinite inner product spaces. Berlin; Heidelberg; New York: Springer Verlag, 1974.

  19. Gohberg I., Lancaster P., Rodman L. Matrices and indefinite scalar products. Basel; Boston; Stuttgart: Birkhauser, 1983.

  20. Azizov T.Ya., Iohvidov I.S. Linear operators in spaces with an indefinite metric. Chichester: John Wiley and Sons, Ltd., 1989.

  21. Lancaster P., Rozsa P. Eigenvectors of H-self-adjoint matrices. Z. angew. Math. und Mech. 1984. Vol. 64, N 9. Р. 439–441.

  22. Ikramov Kh.D. On algebraic properties of classes of pseudo-permutable and H-selfadjoint matrices. Zh. Vychisl. Mat. and Mat. Phys. 1992. Vol. 32, N 8. P. 155–169.

  23. Voevodin V.V., Kuznetsov Yu.A. Matrices and calculations [in Russian]. Moscow: Nauka. 1984. 319 p.

  24. Horn R., Johnson C. Matrix Analysis [Russian Translation]. Moscow: Mir, 1989. 656 p.

  25. Van Loan C.F. Generalizing the singular value decomposition. SIAM J. Numer. Anal. 1976. Vol. 13, N 1. P. 76–83.

  26. Wei Y., Wang D. Condition numbers and perturbation of the weighted Moore–Penrose inverse and weighted linear least squares problem. Appl. Math. Comput. 2003. Vol. 145. P. 45–58.

  27. Wei Y. A note on the sensitivity of the solution of the weighted linear least squares problem. Appl. Math. Comput. 2003. Vol. 145. P. 481–485.

  28. Khimich A.N., Nikolaevskaya E.A. Analysis of the reliability of computer solutions of systems of linear algebraic equations with approximately given initial data. Kibernetika i sistemnyj analiz. 2008. Vol. 44, N 6. P. 83–95.

  29. Nikolaevskaya E.A., Khimich A.N. Estimation of the error of a weighted normal pseudosolution with positive definite weights. Zh. Vychisl. Mat. and Mat. Phys. 2009. Vol. 49, N 3. P. 422–430.

  30. Khimich A.N. Perturbation estimates for solving the least squares problem. Kibernetika i sistemnyj analiz. 1996. Vol. 32, N 3. P. 142–145.

  31. Sergienko I.V., Galba E.F., Deineka V.S. Representations and decompositions of weighted pseudoinverse matrices, iterative methods and regularization of problems. I. Positive definite weights. Kibernetika i sistemnyj analiz. 2008. Vol. 44, N 1. P. 47–73.

  32. Sergienko I.V., Galba E.F., Deineka V.S. Representations and decompositions of weighted pseudoinverse matrices, iterative methods and regularization of problems. II. Degenerate weights. Kibernetika i sistemnyj analiz. 2008. Vol. 44, N 3. P. 75–102.

  33. Khimich A.N., Popov A.V., Polyanko V.V. Parallel computing algorithms for linear algebra problems with matrices of irregular structure. Kibernetika i sistemnyj analiz. 2011. Vol. 47, N 6. P. 159–174.




© 2021 Kibernetika.org. All rights reserved.