Cybernetics And Systems Analysis logo
Editorial Board Announcements Abstracts Authors Archive
Cybernetics And Systems Analysis
International Theoretical Science Journal
-->

UDC 519.21
P.S. Knopov1, O.S. Samosonok2, G.D. Bilа3


1 V.M. Glushkov Institute of Cybernetics, National Academy
of Sciences of Ukraine, Kyiv, Ukraine

knopov1@yahoo.com

2 V.M. Glushkov Institute of Cybernetics, National Academy
of Sciences of Ukraine, Kyiv, Ukraine

samosyonok@gmail.com

3 V.M. Glushkov Institute of Cybernetics, National Academy
of Sciences of Ukraine, Kyiv, Ukraine

bila.galyna@gmail.com

A MODEL OF INFECTIOUS DISEASE SPREAD WITH HIDDEN CARRIER

Abstract. The authors consider an algorithm for estimating the unknown parameters of the infection spread model based on the Markov field tools using the maximum likelihood method is considered. It is assumed that each state of the Markov chain represents some configuration of a finite random Markov field, and the probability distribution of the chain states is the same as general probability distribution of the states of elements of the Gibbs random field.

Keywords: Markov fields, local interaction of field elements, Gibbs distribution, unknown parameters, estimation algorithm.



FULL TEXT

REFERENCES

  1. Liggett T. Interacting particle systems. New York: Springer-Verlag, 1989. 550 p.

  2. Chornei R.K., Daduna H., Knopov P.S. Controlled Markov fields with finite state space on graphs. Stochastic Models. 2005. Vol. 21, Iss. 4. P. 847–874.

  3. Daduna G., Knopov P.S., Chornei R.K. Local control of Markovian processes of interaction on a graph with a compact set of states. Cybernetics and Systems Analysis. 2001. Vol. 37, N 3. 348–360.

  4. Besag J.E. Spatial interaction and the statisctical analysis of latticesy systems. J. Royal Stat. Soc. Lond. Ser. B. 1974. Vol. 36, N 2. P. 192–236.

  5. Самосёнок А.С. Асимптотические свойства оценки максимального правдоподобия для гиббсовских полей. Компьютерная математика. 2012. № 1. С. 142–149.

  6. Golodnikov A.N., Knopov P.S., Pepelyaev V.A. Estimation of reliability parameters under incomplete primary information. Theory and Decision. 2004. Vol. 57, N 4. P. 331–344.

  7. Cамосёнок А.С. Исследование эмпирических оценок параметров гиббсовского распределения, полученных методом максимального правдоподобия. Кибернетика и системный анализ. 2013. № 2. C. 178–187.

  8. Knopov P.S., Kasitskaya E.J. On large deviations of empirical estimates in a stochastic programming problem with time-dependent observations. Cybernetics and Systems Analysis. 2010. Vol. 46, N 5. P. 724–728.

  9. Ermoliev Yu.M., Knopov P.S. Method of empirical means in stochastic programming problems. Cybernetics and Systems Analysis. 2006. Vol. 42, N 6. P. 773–785.

  10. Geman S., Geman D. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Analysis and Machine Intelligence. 1984. Vol. PAMI-6, N 6. P. 721–741.




© 2021 Kibernetika.org. All rights reserved.