Cybernetics And Systems Analysis logo
Editorial Board Announcements Abstracts Authors Archive
Cybernetics And Systems Analysis
International Theoretical Science Journal
-->

UDC 519.8
T.V. Zhyhallo1, Yu.I. Kharkevych2


1 Lesya Ukrainka Volyn National University, Lutsk, Ukraine

tetvas@ukr.net

2 Lesya Ukrainka Volyn National University, Lutsk, Ukraine

kharkevich.juriy@gmail.com

SOME ASYMPTOTIC PROPERTIES OF THE SOLUTIONS
OF LAPLACE EQUATIONS IN THE UNIT DISC

Abstract. The authors consider the optimization problem related to the integral representation of the deviation of positive linear operators on the classes of (ψ, β )-differentiable functions in the integral metric. The Poisson integral is taken as a positive linear operator, being the solution of the Laplace equation in polar coordinates with the corresponding initial conditions given on the boundary of the unit disc. The Poisson integral refers to operators with a delta-like kernel; therefore, it is the best apparatus for solving many problems of applied mathematics, namely: optimization methods and calculus of variations, mathematical control theory, theory of dynamical systems and game problems of dynamics, applied nonlinear analysis and moving objects search. The classes of (ψ, β )-differentiable functions are generalizations of the well-known Sobolev, Weyl–Nagy, etc. classes in optimization problems, on which the asymptotic properties of solutions of Laplace equations in the unit disc are analyzed. The problem solved in the paper will make it possible to generate high-quality mathematical models of many natural and social processes.

Keywords: Laplace equation, (ψ, β )-derivative, optimization problems, Kolmogorov–Nikol’skii problem.


full text

REFERENCES

  1. Chikrii A.A., Chikrii G.Ts. Matrix resolving functions in game problems of dynamics. Proc. of the Steklov Institute of Mathematics. 2015. Vol. 291. P. 56–65. https://doi.org/10.1134/S0081543815090047.

  2. Chikrii A.A., Matіchіn I.I. Game problems for fractional-order linear systems. Proc. of the Steklov Institute of Mathematics. 2010. Vol. 268. P. 54–70. https://doi.org/10.1134/S0081543810050056.

  3. Kharkevych Yu.I. On some asymptotic properties of solutions to biharmonic equations. Cybernetics and Systems Analysis. 2022. Vol. 58, N 2. P. 251–258. https://doi.org/10.1007/ s10559-022-00457-y .

  4. Chikrii A.A., Prokopovich P.V. Simple pursuit of one evader by a group. Cybernetics and Systems Analysis. 1992. Vol. 28, N 3. P. 438–444. https://doi.org/10.1007/BF01125424.

  5. Kharkevych Yu.I. Approximative properties of the generalized Poisson integrals on the classes of functions determined by a modulus of continuity. Journal of Automation and Information Sciences. 2019. Vol. 51, N 4. P. 43–54. https://doi.org/10.1615/JAutomatInfScien.v51.i4.40 .

  6. Zhyhallo T.V., Kharkevych Yu.I. Approximating properties of biharmonic Poisson operators in the classes . Ukr. Math. J. 2017. Vol. 69, N 5. P. 757–765. https://doi.org/10.1007/s11253- 017-1393-8.

  7. Kal’chuk I.V. Approximation of -differentiable functions defined on the real axis by Weierstrass operators. Ukr. Math. J. 2007. Vol. 59, N 9. P. 1342–1363. https://doi.org/ 10.1007/s11253-007-0091-3.

  8. Stepanets A.I. Classification and approximation of periodic functions [in Russian]. Kyiv: Nauk. dumka, 1987. 268 p.

  9. Zhyhallo K.M., Kharkevych Yu.I. Approximation of conjugate differentiable functions by their Abel-Poisson integrals. Ukr. Math. J. 2009. Vol. 61, N 1. P. 86–98. https://doi.org/10.1007/ s11253-009-0196-y .

  10. Kal’chuk I., Kharkevych Yu. Approximation рroperties of the generalized Abel–Poisson integrals on the weyl-nagy classes. Axioms. 2022. Vol. 11, N 4. P. 161. https://doi.org/10.3390/ axioms11040161.

  11. Kharkevych Yu.I., Kal’chuk I.V. Approximation of -differentiable functions by Weierstrass integrals. Ukr. Math. J. 2007. Vol. 59, N 7. P. 1059–1087. https://doi.org/10.1007/s11253-007-0069-1 .

  12. Zhyhallo K.M., Kharkevych Yu.I. Approximation of functions from the classes by biharmonic Poisson integrals. Ukr. Math. J. 2011. Vol. 63, N 7. P. 1083–1107. https://doi.org/ 10.1007/s11253-011-0565-1 .

  13. Zhyhallo K.M., Kharkevych Yu.I. Approximation of -differentiable functions of low smoothness by biharmonic Poisson integrals. Ukr. Math. J. 2012. Vol. 63, N 12. P. 1820–1844. https://doi.org/10.1007/s11253-012-0616-2.

  14. Vladimirov V.S. Equations of mathematical physics [in Russian]. 4th ed. Moscow: Nauka, 1981. 512 p.

  15. Zhyhallo K.M., Kharkevych Yu.I. Approximation of conjugate differentiable functions by biharmonic Poisson integrals. Ukr. Math. J. 2009. Vol. 61, N 3. P. 399–413. https://doi.org/10.1007/s11253-009-0217-x .

  16. Zhіgallo K.M., Kharkevych Yu.I. On the approximation of functions of the Holder class by biharmonic Poisson integrals. Ukr. Math. J. 2000. Vol. 52, N 7. P. 1113–1117. https://doi.org/10.1023/A:1005285818550 .

  17. Chikrii A., Matichin I. Riemann–Liouville, Caputo, and sequential fractional derivatives in differential games. In: Breton M., Szajowski K. (Еds.). Advances in Dynamic Games. Annals of the International Society of Dynamic Games. Birkhuser Boston. 2011. Vol. 11. P. 61–81. https://doi.org/10.1007/978-0-8176-8089-3_4.

  18. Zajac J., Korenkov M.E., Kharkevych Yu.I. On the asymptotics of some Weierstrass functions. Ukr. Math. J. 2015. Vol. 67, N 1. 154–158. https://doi.org/10.1007/s11253-015-1070-8.

  19. Albus J., Meystel A., Chikrii A.A., Belousov A.A., Kozlov A.I. Analytical method for solution of the game problem of soft landing for moving objects. Cybernetics and Systems Analysis. 2001. Vol. 37, N 1. P. 75–91. https://doi.org/10.1023/A:1016620201241 .

  20. Bushev D.N., Kharkevich Yu.I. Finding solution subspaces of the Laplace and heat equations isometric to spaces of real functions, and some of their applications. Math. Notes. 2018. Vol. 103, N 6. P. 869–880. https://doi.org/10.1134/S0001434618050231 .

  21. Zhyhallo K.M., Kharkevych Yu.I. Complete asymptotics of the deviation of a class of differentiable functions from the set of their harmonic Poisson integrals. Ukr. Math. J. 2002. Vol. 54, N 1. P. 51–63. https://doi.org/10.1023/A:1019789402502.

  22. Zhyhallo T.V., Kharkevych Yu.I. Fourier transform of the summatory Abel–Poisson function. Cybernetics and Systems Analysis. 2022. Vol. 58, N 6. P. 957–965. https://doi.org/10.1007/ s10559-023-00530-0 .

  23. Kal’chuk I.V., Kharkevych Yu.I. Approximation of the classes by generalized Abel–Poisson integrals. Ukr. Math. J. 2022. Vol. 74, N 9. P. 575–585. https://doi.org/10.1007/ s11253-022-02084-4.

  24. Zhyhallo T.V., Kharkevych Yu.I. Approximation of functions from the class by Poisson integrals in the uniform metric. Ukr. Math. J. 2009. Vol. 61, N 12. P. 1893–1914. https://doi.org/10.1007/s11253-010-0321-y .

  25. Zhyhallo T.V., Kharkevych Yu.I. Approximation of -differentiable functions by Poisson integrals in the uniform metric. Ukr. Math. J. 2009. Vol. 61, N 11. P. 1757–1779. https://doi.org/10.1007/s11253-010-0311-0 .

  26. Zhyhallo T.V., Kharkevych Yu.I. On approximation of functions from the class by the Abel–Poisson integrals in the integral metric. Carpathian Math. Publ. 2022. Vol. 14, N 1. P. 223–229. https://doi.org/10.15330/cmp.14.1.223-229.

  27. Abdullayev F.G., Kharkevych Yu.I. Approximation of the classes by biharmonic Poisson integrals. Ukr. Math. J. 2020. Vol. 72, N 1. P. 21–38. https://doi.org/10.1007/ s11253-020-01761-6.

  28. Bushev D.M., Kharkevych Yu.I. Conditions of convergence almost everywhere for the convolution of a function with delta-shaped kernel to this function. Ukr. Math. J. 2016. Vol. 67, N 11. P. 1643–1661. https://doi.org/10.1007/s11253-016-1180-y .

  29. Hrabova U.Z., Kal’chuk I.V., Filozof L.I. Approximative properties of the three-harmonic Poisson integrals on the classes . J. Math. Sci. (N.Y.). 2021. Vol. 254, N 3. P. 397–405. https://doi.org/10.1007/s10958-021-05311-8 .

  30. Zhyhallo K.M., Kharkevych Yu.I. Approximation of differentiable periodic functions by their biharmonic Poisson integrals. Ukr. Math. J. 2002. Vol. 54, N 9. P. 1462–1470. https://doi.org/10.1023/A:1023463801914.

  31. Kal’chuk I.V., Kharkevych Yu.I. Approximating properties of biharmonic Poisson integrals in the classe . Ukr. Math. J. 2017. Vol. 68, N 11. P. 1727–1740. https://doi.org/0.1007/ s11253-017-1323-9.

  32. Kharkevych Yu.I., Kal’chuk I.V. Asymptotics of the values of approximations in the mean for classes of differentiable functions by using biharmonic Poisson integrals. Ukr. Math. J. 2007. Vol. 59, N 8. P. 1224–1237. https://doi.org/10.1007/s11253-007-0082-4 .

  33. Kharkevych Yu. Approximation theory and related applications. Axioms. 2022. Vol. 11, N 12. P. 736. https://doi.org/10.3390/axioms11120736.

  34. Hrabova U.Z., Kal’chuk I.V., Stepanyuk T.A. Approximation of functions from the classes by Weierstrass integrals. Ukr. Math. J. 2017. Vol. 69, N 4. P. 598–608. https://doi.org/10.1007/s11253-017-1383-x .

  35. Vlasenko L.A., Rutkas A.G., Chikrii A.A. On a differential game in an abstract parabolic system. Proc. Steklov Inst. Math. 2016. Vol. 293 (Suppl 1). P. 254–269. https://doi.org/ 10.1134/S0081543816050229 .

  36. Pilipenko Yu.V., Chikrij A.A. The oscillation processes of conflict control. Prikladnaya Matematika i Mekhanika. 1993. Vol. 57, N 3. P. 3–14.

  37. Chikrii A.A., Rappoport I.S. Method of resolving functions in the theory of conflict-controlled processes. Cybernetics and Systems Analysis. 2012. Vol. 48, N 4. P. 512–531. https://doi.org/10.1007/s10559-012-9430-y .




© 2023 Kibernetika.org. All rights reserved.